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Ion- and electron-temperature fluctuations in a resistive plasma are analyzed in the two-fluid slab ap-
proximation, allowing for the self-consistently stationary system parameters. In the weakly collisional
region, ion-temperature fluctuations which propagate in the direction of electron diamagnetic drifts can
be excited, whereas electron-temperature fluctuations are considerably smaller in comparison with ion-
temperature fluctuations and are out of phase with them. The modes are more stable when the electron
drift (which produces magnetic shear, satisfying Ampere’s law) flows in the opposite direction to the
mode propagations. The negative electron-temperature gradient is found to be stabilizing, while the
ion-temperature gradient is irrelevant to this stability. The density response exhibits Boltzmann-like
behavior. In the strongly collisional region, both ion- and electron-temperature fluctuations can be ex-
cited to the same order and propagate in the ion diamagnetic drift direction. The negative ion-
temperature gradient is destabilizing, whereas the negative electron-temperature gradient is stabilizing.
The density response exhibits non-Boltzmann-like behavior.

PACS number(s): 52.25.Gj, 52.35.Ra

Low-frequency microscopic density fluctuations have
been observed in a wide variety of magnetic confinement
systems, such as tokamaks, stellarators, and multipoles.
Some distinct features of such fluctuations have been
identified as follows [1]: (1) the frequencies are of the or-
der of the drift wave frequency, (2) the wave numbers are
of the large perpendicular and small parallel wave num-
bers, (3) ion and electron features propagate in the ion
and electron diamagnetic drift directions, respectively [2],
(4) reversal of the plasma current direction reverses the
up-down asymmetry in the microscopic fluctuations [3],
and (5) the density fluctuations exhibit non-Boltzmann-
like behavior [4]. More recently, temperature fluctua-
tions have been extensively measured in some magnetic
confinement schemes [5-8].

Galeev, Oraevskii, and Sagdeev [9] discovered the ion-
temperature gradient instability in a collisionless plasma
for which the ion-temperature fluctuations are excited by
the ion-temperature gradient. Later, Tsai, Perkins, and
Stix [10] considered the electron-temperature fluctuations
associated with the collisional drift instability in the uni-
form magnetic field, dropping the ion-temperature
effects. A complete understanding of heat transport re-
quires a knowledge of temperature fluctuations. Hence it
is of particular interest to study electron-temperature
fluctuations, systematically and simultaneously with ion-
temperature fluctuations, because both electron and ion
heat transports are observed to be anomalous [1,2]. In
this article we analyze ion- and electron-temperature fluc-
tuations in a resistive plasma which retains the electron-
and ion-temperature inhomogeneities, magnetic shear,
and plasma currents, distinguishing two regions: the
weakly and the strongly collisional regions.

In the weakly collisional region, the plasma under con-
sideration is supposed to be immersed in a sheared mag-
netic field in slab geometry. Most analyses of drift waves
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in a sheared magnetic field were concerned with localized
modes, which are centered on the mode rational surfaces
on which the parallel wave number is zero [11-13]. In
this model, both magnetic shear and the parallel wave
numbers of drift waves increase from zero to infinity,
with increasing distance from the mode rational surface.

The stationary condition for a plasma embedded in a
static magnetic field requires that total pressure (magnet-
ic pressure plus plasma pressure) be constant. From this
it follows that both the spatial variation in the values of
the parallel wave numbers of fluctuations and the allowed
values of magnetic shear are limited to the finite values
[14,15], unlike the above model.

Earlier work indicates that resistive drift waves cen-
tered on the mode rational surface are stable [16]. So we
are interested in the stability of alternative modes that
are structurally different from such modes. In addition,
the phase difference between the density response and the
fluctuating electrostatic potential approaches zero at both
small and large parallel wave numbers [17]. It is worth
noting that this phase difference is the source of drift
wave instability. As a result, we address the modes
whose parallel wave numbers are small everywhere, and
which are not localized near the mode rational surface,
obtaining unstable electron drift waves in a sheared mag-
netic field [14,15].

In the weakly collisional region, ion-temperature fluc-
tuations which propagate in the direction of electron di-
amagnetic drifts are shown to be excited, whereas
electron-temperature fluctuations are considerably small-
er in comparison with ion-temperature fluctuations and
are out of phase with them. The growth rate is expressed
as superposition (integral) of the local growth rate, result-
ing from the scattering (Cherenkov emission) of the
lowest-order stable modes by small resistivity. The
modes are more stable when the electron drift (which
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produces magnetic shear, satisfying Ampere’s law) flows
in the opposite direction to the mode propagations
[14,15]. The negative electron-temperature gradient is
found to be stabilizing, while the ion-temperature gra-
dient is irrelevant to this stability. The density response
exhibits Boltzmann-like behavior.

In the strongly collisional region, both ion- and
electron-temperature fluctuations can be excited to the
same order and propagate in the ion diamagnetic drift
direction. The negative ion-temperature gradient is des-
tabilizing, whereas the negative electron-temperature gra-
dient is stabilizing. The density response exhibits non-
Boltzmann-like behavior.

Finally, it is remarked that the ion-temperature-
gradient-driven (reactive) instability [9] is excluded from
our considerations.

We begin our discussion by considering a self-
consistently stationary state of a low- plasma immersed
in a sheared magnetic field, which retains the ion- and
electron-temperature inhomogeneities, and a plasma
current self-consistent with magnetic shear. A two-fluid
description of the plasma in a slab geometry is used, with
the inhomogeneity in the x direction The sheared mag-
netic field B(x)=B,(x)y+B,(x)z (|B,| <<|B,|) satisfies
Ampere’s law:

iBy(x):BN(x)[Vz(x)—“Vez(x)] ,

+B2(0)]'/% N(x) is the normalized stationary density
[N(0)=1], assumed to be the same for ions and electrons;
B is the ratio of electron plasma pressure N (0)7T,(0) to
magnetlc pressure at x =0. V is the stationary ion drift
velocity in units of the sound velocity ¢, (=< [7T,(0)]'/?),
the subscript e refers to the electron species, and space is
expressed in units of ¢,Q; "' (Q; is the ion Larmor fre-
quency at the origin). Substituting these into the momen-
tum equation in a stationary state yields

1

T(x —B 0)N(0)+ —B3*0
(x)+2/3 Yx)=T(0)N(0) 2 (0)
1
=T(0)+— 2
()+2/3 2)
and

Vo—y, = TN)+ B, 4B, 3
v & NB, dx( B dx |’ :

where T;(x) is the ion temperature and T=T,+T,.
Equations (1) and (3) represent the stationary drifts in
terms of the pressure inhomogeneity and magnetic shear.
It should be emphasized that in a low-$ plasma the mag-
netic field can vary only slightly over distance of the or-
der of the plasma pressure scale length and the allowed
values of magnetic shear B, lie within the order of B2

dx (<<1) when the variation in the normalized pressure
d (1) T(x)N(x) is of order unity.
d—B x)=—=BN(x)[V, Ve (x)] . The linearized equations governing the evolution of
temperature fluctuations are taken to be the two-fluid
Here B, and B, are normalized to B(O)=[By2(0) equations derived by Braginskii [18]:
_ J
(N-+n) %v-i—(V—Fv)-Vv +VUT; +t;, )N +n)]+V:r+(N +n) [Vé—vXB+viv,—v,)— claa =0, (4)
P
1
Vo— N n VT, +t, XN +n)]=v,XB+v(v,—v,)—c;=-1=0, (5)
L+ VLN +n)Vv)]=0, ®)
-a%n+v~[uv )V, +v,)]=0,
(N +n) %+(V+v)'vI(T,+z,-)+(N+n)(T,~+t,-)V-v+%V-[(N+n)(T,-+t,-)pXV(Ti—i—t,-)]:O, 7
(N +n) %-F(Ve%—ve)-v (T, +t,)+ (N +n)t,+1,)V-v,
5 ' =N, 2 =0 ®
—3V-[(N +nlT,+1t,)pXV(T,+1t,)|—c NT, “3p (v Upe ) o L,apzte- .
f
Here the lowercase symbols v,, t,, t;, and n are the fluc- dv, Oy
tuating electron fluid velocity, electron- and ion- 7y =1 =(N+n)T;+1;) ax ol /2 )

temperature fluctuations, and density fluctuations, re-
spectively; the normalized collisionless stress tensor 7 is
given in the form

/ 2,

v,

_7T[1=_(N+n)(Ti+t,~)

xx

where [ indicates the component normal to both the mag-
netic field and the x axis, and 9/d/=(B,/B)d/dy

—(B,/B)3/0dz; v denotes the electron- -ion collision fre-
quency; p indicates the component parallel to the mag-
netic field, and 9/3p =(B,/B)d/dy +(B,/B)3/9z; c,
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and ¢, are numerical coefficients of order unity; time is
L b L 1 d |NT; || 39
expressed in units of Q; . For simplicity, ion-ion col- vy =— |—iov+— |—=% | |5vs tikp,
lisions (viscosity) are dropped from the theory. B dx | 2B dx
We assume that the wave frequency  is much smaller NT.
than the ion Larmor frequency ;. This eliminates the +——'Av; ,
fluid velocities v, and v from the above equations, as fol- 2B
lows. For O(w/{;), L1 . d T, ’
T Uy :E —la)vx"l'-“i; 2B 1Ux ox Uy
= t+—n+
=i bt e NT.
T, T, ~p |
UI'—_—L %_{_ aN +—1——a—(Nt,~)+—l—a—n
B |ox N dx ox N ox

where k,=—id/d] and A=3%/dx*—k}. Substituting
For O((w/%Q;)?), these into the ion continuity equation (6) yields
A 2
o, to—+-—L 1t,—21,=0, (9
® ®

where k,=—id/3dp, ;= —T,d(Nk;/B)/N dx, cobz-(d/dx)(k,/B) and we have used v, =(k,/o)(Tn /N +1;+1,).

Itis noteworthy that both |, /w,| and the spatial variation in the values of k lie within the order of B [14,15]. In the
same way, the electron continuity equation reduces to

NT; N k?
B !

ke _1.d
) N dx

ﬂ’d
—4 4 9
T BZ

e

—(kV) [~

N -

Ti
I—E{A

k2
-, +_

2

NT,
k; t, +——t (10)

—o T2+
@ B

N dx

i +(k-V,)

4

T n
~ T eHFe, N‘Fa)dj’—-i-

T,

with 0, = k; /v. On the other hand, the ion- and electron-temperature equations (7) and (8) become, respectively,

2 2

%w—Ti £ t,—%w,cﬁ-—T,——p— %n—kte =0, (11
2 k2 T,

—;—w—Te—L te—%w,e¢—Te—w’i %nﬂi +iT,w, |c3t,+(1+c;) Wen—¢ =0, (12)

where w, = —(k;/B)dT, /dx), ,, = —(k;/B)dT, /dx), and c;=c,+(1+c,)%. Equations (9)-(12), being a complete
set of equations for four unknowns n, ¢, ¢;, and ¢,, constitute the basis of our analyses.

We distinguish between weakly and strongly collisional regions. We shall first focus our attention on the weakly col-
lisional region (0, >>w). When w,— o, Egs. (10) and (12) turn out to be, respectively,

Te Te C3
¢——J-v—n“(1+cl)te=0, ¢“7n—1+c1 t,=0,
showing that electron-temperature fluctuations are negligibly small (isothermal) in this approximation and electrons

obey a Boltzmann distribution. On taking into account a small dissipation, we have electron-temperature fluctuations
to order w, 1

t=—t [ 30+e) wLd [Ny |4 et T) In
e w, |20 Ve | TTNdx | B ! ¢ o 2. |N'
w3l
P

On the other hand, ion-temperature fluctuations in the first approximation can be written as

n / 3. Tk_2
N 2

It is seen that ion-temperature fluctuations are significantly larger (adiabatic) in comparison with electron-temperature
fluctuations, and out of phase with them. Now, upon inserting these into Eq. (9), we obtain the eigenmode equation as

A 3T,
B2 2T, "

k2
= |2 T,0,+T, T2
2 1)

0wy + Tyop)+o(T'k2—a,0,)+ %Ti w,— T, —

[a)3 —1+

Dy
T+T,—
w

k; }n=0, (13)
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with T"=T+2T, /3. Here we shall confine our analysis to fluctuations with |o|~ |w|~|w,|~le,| and |A]>> k2. If

we set A/B?=— k2 in the above equation, to good approximation we have the local eigenfrequency
2 2 i
kito
0=0,(1=Tk)+T' -2+ [T, [1— =2 |o, + [k2—2— |o,
Wy (4F] | Wy |

The second term indicates that the electrons behave isothermally, while the ions respond adiabatically. The third term
is related to magnetic shear and the ion-temperature gradient, and vanishes as B, —0 and d7; /dx —O0.

According to the perturbation theory [14,15], the growth rate can be expressed as superposition (integral) of the local
growth rate, which is taken as the scattering (Cherenkov emission) of the lowest-order stable mode of Eq. (13) by small
resistivitv.

fdx

no {e3[(k-V,)—wo] = 3(1+c) oy, |

where n, and w, are stable solutions of Eq. (13) and it is k
assumed that magnetic shear is related only to the elec- D=0—iT
tron drift. The negative electron-temperature gradient is

found to be stabilizing, while the ion-temperature gra-  apd

dient is irrelevant to this stability. The first term in the

curly brackets indicates that mode stability arises from a 5= _
competition between the Doppler shifts resulting from T, T,
both the electron diamagnetic drift and the electron drift
related to magnetic shear, and the wave frequency, and
we see that the modes are more stable when the electron
drift flows in the opposite direction to the mode propaga-

We observe that electron-temperature fluctuations are
comparable to ion-temperature fluctuations, provided
that T; ~T,. Substituting these into Eq. (10), we find the

tion [14,15]. dispersion relation
We come now to examine the strongly collisional re- 5 5 F 5
gion (w. <<w). To make the physical contents clear, we wptlwg to, )“’0"§ T+Tiw— k, =0,
shall here ignore magnetic shear. Subtracting Eq. (9) 0
from Eq. (10) gives, to lowest order, with 0, =T;0,/T,. We note here that the mode propa-
gates in the ion diamagnetic direction (0, + @, >0). The
N +¢+t = third term shows that both ion and electron fluctuations

. ) behave adiabatically. On taking into account small w,,
from which we see that the fluctuating density exhibits we find the growth rate

non-Boltzmann-like behavior. The ion- and electron-

temperature fluctuations can then be written as, respec- o T, T Die
tively, V“ziw (@o—w)| | T.T, w0+? (14cy) T
[(Ahad!] t i i e
ti=—T, |1— o [n , This indicates that the negative ion-temperature gradient
D |N is destabilizing, whereas the negative electron-
temperature gradient is stabilizing.
Finally, we state that, in the intermediate region, the
t=—T |l1— 1+ II, b |o|n two modes discussed here are expected to coexist.
¢ ¢ T, ©o |D|N’ )
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